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A numerical study has been undertaken in this project of the problem revolving around 
the steady-state motion of a gas bubble in a viscous incompressible liquid in a vertical 
tube, where the distance between the walls of the bubble and the tube may be small. For 
Reynolds numbers Re ~ i00 we have obtained the characteristics of the flow and the shape 
of the bubble surface. We have observed that in the case in which Re > 60, given the com- 
pressed conditions in the trailing portion of the bubble, a dead zone is formed at the tube 
wall. Diagrams of the flow regimes have been constructed on the basis of the numerical 
calculation data. 

i. Formulation of the Problem. Let us take a vertical tube of radius Rt, filled with 
a viscous incompressible liquid at rest. The force of gravity acts from the top down. Thus, 
if we cause a gas bubble to enter the tube (or if we produce this gas bubble by means of 
an electric discharge), the bubble will float to the top under the force of Archimedes buoy- 
ancy. If the volume, shape, and rate of ascent do not undergo significant change over some 
segment of bubble motion in this case, we can then assume that the bubble is engaged in 
steady-state motion. As demonstrated by numerous experiments, the segment of non-steady-state 
motion in a number of cases is small and in actual installations a quasisteady buoyancy 
regime is quickly established. We should take note of the fact that the buoyancy rate u 
under these conditions is defined by the parameter and depends on the volume V, the surface 
shape, and the flow of the liquid around the bubble. 

The mathematical description is conveniently carried out in a coordinate system connec- 
ted to the "center" of the bubble. Within this system the gas bubble is at rest and the 
liquid impinges on the bubble and at some distance from the bubble exhibits a velocity equal 
to u (Fig. i). Let us introduce the coordinate system (r, 8, @) with its origin O at the 
"center of the bubble." In the case of axisymmetric flow the Navier-Stokes equations in 
the variables of the vortex ~ and the stream function ~ [i] have the form 

D~$ = --2r sin 0co; (i. i) 

D ~co --- ~ %cot -- ~rcoo -- 7-% + co ctg O~;r -- 7- co~ + r~ sins 8 ~ coo (1.2) 
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( D  2 0 ~ sin0 0 (  t ~) 
----~7 + r ~ eO ~ -- 

Let us specify the boundary-value conditions: 
R ( o ) ,  8 ~ [ o ,  ~]) 

the condition of nonpenetration 

Stokes operator ). 
a )  a t  t h e  s u r f a c e  o f  t h e  b u b b l e  r ( r  = 

~(r, O) ---- 0; ( 1 . 3 )  

equality of tangential stresses to zero 

1:l 2 -5 2R '~ -- R R  '~ ~r  
m -5 B 2 - S R ,  2 r~ s i n ~  = O; (1.4) 

equality of the difference between the normal stresses to the capillary forces 

~o~ -- ~oI r + R'%~ + ~ + ~ K  - - p ( r , O ) +  2 ~ = - -  
r 2 sin 0 -R- Pg 

(i.5) 
R 2 + 2 R ' 2 - - R B  " [ R' cosO--RsinO I 

K = (R = ~- R'2) a/2 -5 R sin 8 (n 9' ~- R'2) 1/2 -- curvature F, 

v, coefficient of kinematic viscosity; p, liquid density; a, coefficient of surface tension; 
p = q - pgrcose + p~ [p~ = p(r = R t, e = ~/2)], pressure in the liquid; q, generalized 
pressure; pg, gas pressure in the bubble, assumed to be constant); 

b) at the tube wall [r= G(8), e e [0", ~ - e*], 8* = arctan(Rt/s Z, 
tube segment under consideration] 

length of moving- 

adhesion condition 
I 05 . cos8 O, 
7 Or +r2-s-~mO O0 a--u; (1.6) 

nonpenetration condition 

c) at the tube axis (8 = 0, 

d) at the tube inlet (r = FI(@), 8 e [0, 8"]) and 
8 e [~ -- 8", ~]), the conditions of an unperturbed flow 

~(r ,  O) = - - ( u / 2 ) r  ~ sin~O; ( 1 . 7 )  

e = ~) t h e  c o n d i t i o n s  o f  s y m m e t r y  

~(r,  O) = o(r,  O) = O; ( 1 . S )  

at the outlet (r = F2(@),: 

2. Dimensional Analysis. 

~}i =- - - ( u / 2 ) r  2 sin20, ~ = 0  (i = 1, 2). ( 1 . 9 )  

E q u a t i o n s  ( 1 . 1 ) - ( 1 . 9 )  c o n t a i n  s i x  i n d e p e n d e n t  p a r a m e t e r s :  

p, ~, z, g, p ~ - - p g ,  R. ( 2 . i )  t 

As we can see from (1.5), the solution depends only on the difference between the pressures 
pg within the bubble and p~ at infinity. The first five parameters specify the medium and 
characterize its properties, while the sixth parameter established the geometry of the region 
occupied by this medium. According to dimensional theory, three independent dimensionless 
criteria exist. Various methods may be used to make these criteria dimensionless. In the 
course of an experiment, as a rule, the bubble volume V is easily specified (and this applies 
equally to any linear dimension a = 3V~4-~-). Moreover, since in this formulation the liquid 
at some distance from the bubble moves at a constant velocity-u, as the characteristic 
dimensions and velocities for the procedure of making the criteria dimensionless we can 
take a and u. We should remember that in (2.1) any two parameters become determinable. 
In the present study these will be g and pg - p~. 

Assuming r = 2ar', ~ = (2a)2u~ ', ~ = (u/2a~'), R = 2aR', q = pu2q ', in analogy with 
[i] we obtain the following dimensionless parameters: Re = u2a/v, the Reynolds number; 

2 2 We = pu 2a/o, the Weber number; Fr = u /g~ the Froude number; Pd = (P~ - p=)2a/o, pressure. 
As the characteristics of the geometry of the flow region, we can conveniently take a look 
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at the quantity I = a/Rt, which is contained in the equation describing the boundaries of 
the flow region. 

3. Transformation of Coordinates and the Method of Solution. Equations (1.1)-(1.9) 
provide a closed system for the determination of the flow functions and the surface shape 
of the bubble. Theoretical studies of the validity of this class of problems can be found 
in [2]. Since the flow region is not known in advance, direct n~erical calculation involves 
considerable difficulties. To overcome these difficulties, we will change to a coordinate 
system in which the flow region is kno~. Let us introduce 

~=(r--Q(O))I(R(O)--Q(O)), O'=O. (3.1) 

Here Q(O) denotes the equation for the boundary containing the inlet to the tube, the outlet 
from, and the wall of the tube. Transformation (3.1) changes the flow region into a rec- 
tangle [0, i] x [0, ~]. In these new variables the original equations are more complex 
in form, but this is offset by the fact that the flow region is known [i, 3]. 

The algorit~ and the method of n~erical solutions are analogous to those covered 
in [i]. The algorit~ was tested in the following manner. For I = 0.2 the calculations 
were performed with various values for We, Re, and ~ = 0 when r = Q. The solutions coincided 
with those from [i]. As shown by the experiments, even when I = 0.i the influence of the 
walls on the buoyancy of the bubble is virtually insignificant. It turned out that [4] 
when I < 0.2 for 1 < Re < 40 the solutions are in agreement with [i]. 

Solutions have been found in [5] for the problem in which Re < 0.2 by the method of 
expanding the functions over the small par~eter and comparison against experiment was car- 
ried out. Figure 2 shows a comparison of the derived velocity profiles in the equatorial 
plane for I = 0.75, 0.5, and 0.25 (lines 1-3) with those calculated in [5]. The velocities 
are virtually coincident. 

The parameter s = 10 has been chosen from the results of the test calculations and 
undergoes no further change. The characteristic form of the calculation grid in the original 
coordinate system can be seen in Fig. 3. It is rather small near the bubble, but in the 
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space between the bubble and the wall, at some distance from the bubble, it becomes larger. 
On the whole, a grid of this type is useful because it allows us to obtain solutions of 
problems for values of l, close to unity, when the distance between the tube walls and the 
bubble is small. On the other hand, it does have its shortcomings. We should remember 
that with large values of s it may turn out that no single theoretical point will enter 
the segment containing the inlet to or the outlet from the tube. This imposes limitations 
on the interval for the variable e. In these calculations no less than three points entered 
the segment containing the inlet or the outlet. 

The original problem has three independent dimensionless parameters. In order to ob- 
tain complete information regarding the possible flow regimes, we require a considerable 
number of calculations. In turn, in order to extract from this extensive volume of informa- 
tion and to present in sufficiently usable form the data describing the flows, the derived 
calculation results must be subjected to appropriate processing. It developed that it was 
convenient to perform these calculations, provided that Re, We, and ~ were chosen as the 
independent parameters. With a fixed ~ we were able to obtain solutions for various Re 
and We, as in [i]. Changing ~, it became possible to develop a considerable amount of in- 
formation regarding the flows. The attempt to systematize this information by means of 
well-established methods (construction of flow-regime diagrams in Re and We coordinates, 
or Re, E = pg(Za)2/o [6], or N v = u4V~-~, N b = v~-[7]) does not yield the desired result, 
since in each of these the coordinates are dependent on the velocity of bubble ascent, which 
is unknown in advance and, moreover, it is markedly affected by the parameter ~. 

Most convenient for this purpose are the coordinates R o = a / ~  R v = a/3v~7~g [8 , 
9]. Since R o and R v depend on the characteristic dimension a of the bubble, having construc- 
ted, for example, the Fr isolines in these variables, it is possible very simply to find 
the rate of ascent for a bubble of a given dimension and to observe the features of the 
flow for a given liquid, since the Morton number M = gv~p3/o ~ = (Ro/R~) 6, and this means 
that each medium is represented in the coordinates Ro, Rv by some straight line whose slope 
is defined by M. 

The calculations were carried out for three values of ~, and for each of these in the 
case of Re = 0.i-i00 a series of calculations were carried out for We = 10-7-3.3. 

4. Moderate Influence of the Walls (~ = 0.5). Figure 4 shows the Fr isolines in the 
coordinates R o and Rv. The lower left-hand angle I, bounded by the solid line, represents 
the region of spherical bubbles. The level lines are virtually straight lines parallel 
to the R o axis. This means that the rate of ascent depends exclusively on R v. We observe 
a linear relationship between Fr and Re: Fr = k I Re (k I = 0.05). In region II, contained 
between the two solid lines, the bubble shapes are other than spherical. The Fr isolines 
are distorted, and we observe two variations in their behavior. In the upper portion of 
region II the Fr isolines extend to the straight lines parallel to the R v axis, i.e., the 
flow depends on the single parameter Ro, while in the lower region II the Fr isolines ex- 
hibit a tendency to monotonic diminution with an increase in R o. This behavior on their 
part is a reflection of the diverse nature of bubble deformation. Thus, in the upper portion 
of region II the bubbles undergo flattening, and they are drawn out across the flow, as 
in the case of an "unlimited volume" [i]. Everywhere above the upper rectilinear boundary 
of region II we find a closed wake behind the bubble: the bubble and a part of the liquid 
are streamlined by the liquid flow. The changes in the deformation of the bubble lead to 
a situation in which the relationship between the bubble region and the region of the wake 
changes with a relatively small change in the external boundary of this formation. In Fig. 
5a (Re = 60, We = 2.57, M = 6.4.10 -6 , R o = 1.72, R v = 12.6) we see a characteristic flow 
pattern with the isolines of the stream function represented at the bottom and the liquid 
velocity field through the cross section of the tube shown at the top. The left-hand dashed 
line in Fig. 4 indicates that the frontal portion of the bubble is deformed by an upstream 
protrusion while the right-hand dashed line indicates that the trailing portion of the bubble 
is elongated downstream. Thus, the deformation of the bubble in the lower portion of re- 
gion II comes about as a consequence of elongation of the bubble along the axis of the tube. 
Figure 5b (Re = 0.I, We = 0.065, M = 954, R o = 2.44, R v = 0.78) shows the flow pattern for 
this case, while Fig. 5c (Re = 20, We = 3.18, M = 0.001, R o = 2.16, R v = 6.74) shows the 
flow pattern which corresponds to a region intermediate between these two sections. The 
bubble has a shape reminiscent of a lens. Despite the fact that the trailing portion is 
flat, the flow here undergoes no detachment. The velocity profile through the cross section 
of the tube exhibits differences throughout only in a small zone near the bubble. The fric- 
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tion at the tube wall which coincides with the function 2wiRe is insignificant and it is 
negative along the line of the bubble, which suggests acceleration of the liquid here, and 
the friction both in front and behind the bubble is positive. 

5. StronE Influence of the Walls (% = 0.8). Figure 6 shows the Fr isolines in the 
coordinates R o and R~. The flow regime diagram, on the whole, has the same structure as 
in the case of X = 0.5, but shifted upward. The left-hand lower corner I, identified by 
the bent solid line, represents the region of spherical bubbles. The value of Fr undergoes 
virtually no change as R a increases and depends linearly on Re:Fr = k 2 Re (k 2 = 0.00575). 
In region II the flow is determined by the parameters R o and R v. The dashed lines indicate 
the nature of bubble deformation. The extension of the bubble along the axis leads to an 
increase in the gap between the walls of the tube and the bubble. A characteristic flow 
pattern can be found in Fig. 7a (Re = 0.4, We = 0.019, M = 0.148, R o = 1.63, R v = 2.24). 
In the upper portion of region II the bubble is wedge-shaped (Fig. 7b, Re = 60, We = 0.19, 
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M = 2.3"i0-8, R o = 1.42, R v = 26.7). The gap between the walls of the tube and the bubble 
is made smaller, becoming shortened in the axial direction. In each of these cases the 
flows are distinguished only in a small region near the bubble. The liquid is accelerated 
at the axis of the tube, and at some distance from the wall we observe a zone of decelerated 
flow. Figure 8 shows the distribution of the vortex ~ at the wall of the tube: i) Re = 
0.4, We = 0.019, M = 0.148; 2) Re = 20, We = 0.36, M = 8.2"10-6; 3) Re = 60, We = 0.19, 
M = 2.3"10 -8 As the gap between the walls of the tube and the bubble is reduced, the nega- 
tive peak in ~ increases sharply, i.e., the liquid is accelerated. Im2aediately behind the 
narrow portion of the gap m changes sign to the positive, i.e., the liquid is decelerated 
at the wall in an expanding flow. In the narrow band of region II (see Fig. 6), where the 
bubble deformation process is restructured, the Fr isolines correspond to the contour lines 

of the saddle surface. This means that the relationship between the rate of bubble ascent 
and its dimensions will be nonmonotonic in nature. 

The increase in bubble dimensions leads to an increase in the rate of ascent only when 
the deformation of the bubble is caused by its extension along the axis of the tube. The 
friction at the wall characterizes the extent of "tube blockage." 

6. The "Plug" Flow Regime (~ = 0.98). Calculations for values of ~ close to unity 
apparently are of only theoretical interest, since in actual practice in these cases tube 
"blockage" occurs. The presence of irregularities on the wall and the vaporization process 
at the free surface, which may be decisive in the given case, lead to a situation in which 
the thin liquid film between the walls of the tube and the bubble breaks down. 

Figure 9 shows the flow regime diagrams in the coordinates R o and R v. The nature of 
the Fr isolines is the same as in Figs. 4 and 6. The region of their nonmonotonic change 
has been raised even higher. To the left of the straight line R o = 0.5 we have the region 
in which spherical bubbles exist. The dashed lines indicate the nature of bubble deforma- 
tion. Thus, when R o > 1 the deformation of the surface takes place as a result of surface 
elongation in the direction of the flow, with an enlargement of the space between the walls 
of the tube and the bubble. In the spherical bubble region Fr is proportional to Re: Fr = 
k3Re (k 3 = 0.0000257). The rate of bubble ascent is very small: u = /gaFr. For many 

liquids 60 = /o-7~pg = 0.0015 - 0.003 m, when R o = 0.5, a = 0.560 . Substituting all of this 
information into the formula for the velocity yields u = ~9.8-0.56oFr. When R v = i0, Fr = 
0.03.10 -~ and u ~ 0.15 mm/sec. 

Figure 10a (Re = 0.004, We = 2.1"10 -6 , M = 0.0813, R o = 1.12, R v = 1.71) shows the 
pattern of the flow around a bubble when Re = 0.004. Despite the fact that Re and We are 
small here, the bubble surface is deformed. An increase in Re leads to a reduction in the 

gap between the walls of the tube and the bubble. The most significant differences from 
Fig. 10a are observed behind the bubble, at a distance equal approximately to the diameter 
of the tube. A zone of decelerated flow arises here in the vicinity of the wall, and near 
the bubble surface and the tube axis a liquid jet is formed, which, by the way, undergoes 
rapid deceleration. Figure 10b shows the flow for the case in which Re = 60, We = 0.0024, 
M - 10 -12, R O = 1.08, R v = 94.65. At the wall behind the bubble we note the formation of 
flow with closed streamlines, i.e., a toroidal vortex. A liquid jet exists between the 
bubble and this vortex, moving at a velocity considerably greater than the bubble rate of 
ascent, and it is directed toward the axis of the tube. With Re = i00 the flow pattern 
becomes more complex. At the tube wall behind the bubble we now have two vortices rotating 
in different directions. Figure ii shows the graphs for the distribution of m at the wall 

of the tube : i) Re = 0.004, We = 2.1"10 -6 , R o = 1.12, R v = 1.71; 2) Re = 40, We = 0.0053, 

R o = 1.14, R v = 58.2; 3) Re = i00; We = 0.00032, R o = 0.26, R v = 102.4; 4) Re = 60, We = 
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0.0024, R o = 1.08, R v = 94.65. In the region where Re < 60 (see Fig. 9) where the Fr iso- 
lines are monotonic or exhibit a slight local maximum, the peak in the modulus of ~ diminish- 
es as R o increases (the gap is enlarged). With Re > 60 in the zone bounded by the dashed 
lines, the flow and the deformation of the surface proceed in a manner such that the peak 
of the modulus of w at the wall becomes even larger. 

7. Discussion of Results. The flow regime diagrams shown in Figs. 4, 6, 9 and the 
flow diagrams (Figs. 5, 7, i0) provide some idea as to the process of bubble buoyancy and 
the influence of the walls on the flow. The presence in this problem of the parameter 
prevents us from constructing the relationship between the rate of bubble ascent and the 
dimensions of the bubble in a tube with the given radius as easily as in the case of an 
unlimited liquid volume. To achieve this goal it is essential that we have a significant- 
ly larger number of diagrams with various values of I. Here, on the other hand, we can 
obtain only three points on this relationship. In tubes of small radius the increase in 
bubble dimension may lead to the "blockage" of the tube. Only when R o > 1 will the increase 
in the volume of the bubble lead to an increase in the rate of bubble ascent. 

Attempts to obtain results for R o larger than indicated on the diagrams led to a situa- 
tion in which the bubble frequently began to grow, becoming elongated in the direction of 
the axis. The iteration process converged, but for another value of ~. Increased accuracy 
of calculation or a larger number of nodes in the calculation grid, on the whole, did not 
eliminate this problem. This may possibly be associated with the fact that a "plug" flow 
regime set in, or one close to it, practically defining both the flow in which the rate 
of bubble ascent no longer depends on bubble volume. Taking into consideration the presence 
of nonsteadiness at the free surface under specific conditions, we can ascribe another ex- 
planation to this phenomenon. 

Comparison of the diagrams in Figs. 4, 6, and 9 with ones analogous from [9] shows 
their good agreement in the region R o > i. With R o < 1 we have considerable divergences 
associated with the presence of surface-active substances (SAS) in the experiment. As was 
demonstrated earlier [8], if we were able to rid ourselves of the SAS, the comparison of 
the experimental and theoretical data would also be satisfactory for the case in which 

R o < i. 

The calculation results presented here are in qualitative agreement with the experimen- 
tal data from [i0], where the longitudinal component of the velocity profile through the 
cross section of the tube and the friction at the wall were measured as part of the problem 
dealing with plug-flow motion of a string of bubbles. 
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THE KINETIC MODEL OF A CARRIER PHASE 

IN A HETEROGENEOUS MEDIUM 

Yu. E. Gorbachev UDC 533.7 

To describe a rarefied gas suspension we normally make use of a system of Boltzmann 
equations (BE), written for each of the components (see the review in [i]). Regimes which 
allow for such a description are examined in [2] and these are characterized by a system 
of inequalities (i, j = i, 2): r i << di, max r i ~ s (j ~ i), where r idenotes the radii of 

the mixture components, d i = ni -I/3, ni, s is the numerical density and the mean free path 
of the i-th component [s ~ (ri2ni)-I]" In [3-6] we find a method for the solution of this 
system through various Enskog-Chapman (ECh) modifications. 

Among the advantages in studying systems described by BE is the utilization of kinetic 
models. With this approach consideration of the complex physicochemical processes occurring 
at the surface of a particle is reduced to the calculation of the appropriate coefficients 
of the model (expressed in terms of the exchange coefficients), as well as the transition 
to the macroscopic description (including the derivation of expressions for the transfer 
coefficients) are realized considerably more simply than in the solution of the complete 
BE by the ECh method. The different versions of these kinetic models for mixtures were 
studied in [2, 7-9]. In the present study we examine the question of the construction of 
a kinetic model for the light component and its analysis within the framework of the ECh 
method, given an arbitrary function for the distribution of the heavy component. 

The following BE system serves as the basis of our study: 

d f / d t l  = J=(f: ,  ]:) + J:2(/~, f~), ~2/dt~ = J3z(/3, /2) + J21(/~, f~), 

whe re  d / d t  i = 8 / 8 t  + v i ' O / O r .  

L e t  u s  e x a m i n e  a h e t e r o g e n e o u s  m i x t u r e  c h a r a c t e r i z e d  by s u b s t a n t i a l  d i f f e r e n c e s  i n  
mass  and  c h a r a c t e r i s t i c  r a d i i  o f  t h e  c o m p o n e n t s  e 2 = mz/m 2 ~ 1,  r 1 ~ r 2. I n  t h i s  c a s e ,  
t h e  r e f e r e n c e  mass  ~12 - m l ,  and  i n  e v a l u a t i n g  t h e  s c a t t e r i n g  c r o s s  s e c t i o n  i t  i s  p o s s i b l e  
to assume that o~i r l  2 2 _ 4o l ~ ' O12 ~ r2  , 022 2" 

For the collision terms Jij we will use Boltzmann-type collision integrals written 
in symmetrizedform: 

( ' n x r ~ 2 ) 8 ~  ' , a , , erij = ) dr, dvj%8 oij ( / ,Is  - 1 , 4 ) ,  ( i )  

where 6p and 6 E are the delta-functions of the conservation of momentum and of the kinetic 
energy of the colliding pair; the primes denote that a given quantity belongs to the charac- 
teristics of state after collision; a d is the differential scattering cross section whose 
analytical approximations for elastic collisions have been studied in detail in [i0]. In 
particular, in order to calculate the cross section of the collision between the light com- 
ponent and a heavy component, as well as within the heavy component, it was proposed in 
[ii] to describe the corresponding interactions by means of the Kihara potential. 

Construction of the kinetic model [i.e., a finite-multiple approximation of integral 
(i)] involves two stages: the finding of the quasisteady distributions of fi~ the expan- 
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